
Solving the Spectroscopy Interference Effects of
�-Carotene and Lycopene by Neural Networks
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In this study a new computerized approach and linear models (LMs) to solve the UV/vis spectroscopy
interference effects of �-carotene with lycopene analysis by neural networks (NNs) are considered.
The data collected (absorbance values) obtained by UV/vis spectrophotometry were transferred into
an NN-trained computer for modeling and prediction of output. Such an integrated NN/UV/vis
spectroscopy approach is capable of estimating �-carotene and lycopene concentrations with a mean
prediction error 50 times lower than that calculated by the LM/UV/vis spectroscopy approach (without
any previous physicochemical knowledge of the process to be modeled).
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INTRODUCTION

Carotenoids are widespread in nature, being the main group
of pigment with important metabolic functions (1). There are
many studies showing strong correlation between carotenoid
intake and a reduced risk of some diseases, such as cancer,
atherogenesis, bone calcification, eye degeneration, and neuronal
damages (2–4), due its antioxidant activity.

The analytical methods for measuring carotenoids in veg-
etables are limited due to their characteristics of solubility and
instability, which makes necessary a very careful handling
process and a short analysis time to avoid degradation and
isomerization. For this reason, the necessity for a reliable and
rapid analysis method for carotenoid quantification in vegetable
products is recognized in the literature (5, 6). Carotenoid analysis
in food products may be done by different analytical methods
such as high-performance liquid chromatography (HPLC),
spectrophotometry, or color evaluation (7, 8). A spectroscopy
method for carotenoid analysis is faster, cheaper, and easier to
perform than an HPLC method which is more time-consuming
and requires specific reagents, complex instrumentation, and
more trained people to perform the analysis. The selection of
an analytical method depends on the accuracy requirements,
analysis conditions (sampling time, sample preparation, etc.),
and the kind of product analyzed (physicochemical stability,
solubility, etc.) (8, 9). In spite of the great interest in both

�-carotene and lycopene analysis, better methods for their
characterization and determination are still needed (10).

Spectrophotometry can be used to rapidly assess the �-car-
otene and lycopene contents of different vegetable products;
this method shows an overestimation of the carotenoid content
as has been demonstrated in a previous study by Olives Barba
et al. (9). These authors showed the overlap of the lycopene
band at 446 nm with that of �-carotene as the main reason for
the observed deviations, compared with the resolution obtained
by HPLC. The differences in the absorption spectrum between
lycopene and other major carotenoids in foods such as R-car-
otene, �-carotene, or luteine make the lycopene quantification
easy at its characteristic maximum of 502 nm, with no
interference from other compounds, in lycopene-rich samples
such as tomato or watermelon. Fish et al. (11) stated that, in
samples where lycopene is at least 70% of the constituent
carotenoids, the contribution of carotenoids other than lycopene
to the absorbance at 502 nm is less than 2% for watermelon,
4% for tomato, and 6% for pink grapefruit. This problem is
almost nonexistant in tomato products where lycopene is the
mayor carotenoid (12). However, in samples where lycopene
is less than 70%, using these absorbance values, the carotenoid
quantification is notably less accurate.

Given the complexity of an adequate resolution of the UV/
vis spectra mentioned previously together with the need for a
quick and precise determination of each one, it is necessary to
develop techniques capable of solving the interferences of these
chemical compounds.

Algorithms based on neural networks (NNs) fulfill these
requirements; they can be used to resolve complex spectra and
interferences between different compounds. NNs have been
applied to the interpretation of voltamperometric measurement
of glucose and ascorbic and uric acid mixtures (13) as well as
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UV/vis spectra of 1-ethyl-3-methylimidazolium ethyl sulfate,
toluene, and water mixtures, obtaining satisfactory results (14).
NNs have been recently applied to different aspects of food
science such as the interpretation of spectroscopic data, iden-
tification of functional groups, and quantitative analysis (15).
At the present, no work has been reported on the resolution of
carotenoid spectra.

In this work, an NN/UV/vis approach was used to determine
the �-carotene and lycopene concentrations from standard
mixtures. The spectral information obtained by spectrophotom-
etry (measurement of the absorption intensity) was used as an
input vector, and the analyte concentration was used as an output
vector. The present results may open the way to other applica-
tions in the treatment of data for the resolution of complex
spectra as UV/vis determination of carotenoids in foods.

MATERIALS AND METHODS

Reagents, Standards, and Instrumentation. Standards of all-trans-
lycopene and �-carotene used in this work were from Sigma-Aldrich-
Fluka (St. Louis, MO), with a purity g90%. Standard solutions of
known amounts of �-carotene and lycopene in n-hexane (Merk,
Darmstadt, Germany) were prepared every day. Their absorptivities
were compared to check their purity by calculating the real concentration
of the standard solution using the extinction coefficient (16, 17).

Standard Mixtures. For identification and quantification purposes
individual working standard solutions in the range of 0.4-3.2 µg ·mL-1

were freshly prepared by dilution in hexane. A five-level factor
experimental design of two factors and two response variables was
performed to optimize the neural network model. These factors were
�-carotene and lycopene concentration values, in the range between
0.4 and 1.6 µg ·mL-1. The response variables were the absorbance
values at 446 nm for �-carotene and 502 nm for lycopene. The
percentages of �-carotene and lycopene of each experimental mixture
designed (25 in total) are shown in Figure 1.

A Pharmacia Ultrospec 4000 UV/vis spectrophotometer was em-
ployed for absorbance measurements using quartz cells of path length
1 cm. Data acquisition and spectrometric evaluation were performed
using PESSW software, version 1.2. In all cases, a minimum of three
replicate measurements of spectroscopic absorption for each sample
were carried out.

Neural Network Model. In this work, a multilayer feed forward
neural network, specifically a back-propagating perceptron model, has
been used. This model has been successfully applied to a variety of
practical pattern recognition tasks, signal filtering (18), modeling and
control (19, 20), and estimation of chemical concentrations, solving
their interferences (13, 14).

The NN used consisted of three layers called the input, hidden, and
output layers, and they consisted of neurons (single operating elements).

The input layer was only used to input the database into the NN. In
the other layers, nonlinear calculations were performed. In the hidden
layer, each neuron received signals from other input neurons (neurons
in the input layer); these signals were summed by the activation
function, eq 1. Then, the result was transformed by the transfer function,
eq 2. Finally, the result was sent to the output neurons (neurons in the
output layer). In every output neuron, after similar calculations (vide
supra), the estimations were calculated. In eqs 1 and 2, yj and yk

represent the output of hidden (j) and output (k) neurons, respectively.
wjk represents the weight between the jth hidden and the kth output
neurons. Hyperbolical tangent, sigmoid, or linear algorithms are
commonly used as transfer functions (21). As the sigmoid algorithm,
eq 2, and the data used here ranged between 0 and 1, this algorithm
was used as the transfer function. The weights were adjustable
parameters of the NN associated with each of the connections between
neurons, and they modified the communicated signal between neurons
(19).

xk )∑
j)1

wjk yj (1)

yk ) f (xk)) ( 1

1+ e-xk) (2)

The optimization process of the NN matrix of weights was carried
out by the training function. Here, the training function was selected
to prevent the overfitting (violation of Occam’s razor) and overtraining
(22). The overtraining problem referred to the fact that the network
only memorized the learning set and lost its ability to generalize. With
few learning samples, the Bayesian regularization back-propagation
model (TrainBR) was selected to perform the learning process because
its generalization power was higher than that of other training functions
(23). TrainBR minimized the prediction error by using a linear
combination of mean square estimation error (MSE), eq 3, and weight
(MSW), eq 4. It determined the correct combination to produce a
network that generalized new input data well inside the learning data
range. In eqs 3 and 4, N, yk, rk, and w are the number of observations,
NN model estimation, real value, and weight value between layers and
the subscripts i, j, and k indicate the input, hidden, and output layers,
respectively. In eq 5, γ is the performance ratio, which was set to 0.5,
giving equal importance to MSE and MSW values (23).
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msereg) γ(MSE)+ (1- γ)(MSW) (5)

The TrainBR algorithm was used to update the matrix of weight
according to the Levenberg-Marquardt optimization. The Jacobian jX
of performance with respect to the weight and bias variables X was
calculated in the back-propagation calculation procedure:

jj) jX · jX (6)

je) jX · e (7)

dX)- jj+ I ·Lc
je

(8)

In eqs 7 and 8, e is a vector of network errors, Lc and I are the learning
coefficient (similar to the h parameter in Newton’s method, often called
the Newton-Raphson method or the Newton-Fourier method) and
identity matrix, respectively. If the msereg value, eq 5, decreases or
increases, Lc also goes down or up by a learning coefficient decrease
(Lcd) or learning coefficient increase (Lci) parameter, respectively.

The topology of the NN used here consisted of an input layer with two
neurons for the input variables (absorbance at 502 and 446 nm), one hidden
layer (optimized afterward), and an output layer with two neurons to
estimate �-carotene and lycopene concentration values. This topology with
a single hidden layer was suitable to solve problems of similar or even
higher complexity (19, 24, 25). Moreover, more hidden layers may have

Figure 1. Five-level factor experimental design of two factors and two
response variables used to optimize the neural network.

6262 J. Agric. Food Chem., Vol. 56, No. 15, 2008 Torrecilla et al.



caused overfitting, since the network focused excessively on the idiosyn-
crasies of individual samples (25). Every NN model used in this work
was designed using Matlab, version 7.01.24704 (R14). The statistical
analyses were carried out by Statgraphics Plus, version 5.1.

Learning and Verification Samples and Processes. (a) Learning
and Verification Samples. Given that the NN used was based on a
supervised algorithm, to optimize the matrix of weights, it was necessary
to use input and output data that adequately characterize the process
to be modeled. These data were obtained with the experimental design
described in the “Reagents, Standards, and Instrumentation” section.
These data were divided into two groups, viz., learning and verification
samples. In this work, the data were organized in four rows (absorbance
at 502 and 446 nm and their respective �-carotene and lycopene

concentration values). The whole data set (absorbance values of 25
�-carotene and lycopene mixtures) was randomly distributed into the
learning (80%) and verification (20%) samples, but taking into account
that no data set or any of its replications must be presented in the
verification sample.

(b) Learning and Verification Processes. The learning process was
the mathematical procedure used to optimize the matrix of weights. It
was carried out by presenting the learning samples to the NN model.
When the output was estimated, the MSE value was calculated, eq 3.
Then the back-propagation algorithm was applied to optimize the matrix
of weights of the NN as a function of MSE. This calculation process
has been described in the literature (19, 21, 24).

In the verification process, when the weights were optimized, using
the absorbance values at 446 and 502 nm (input variables of the
verification sample), the �-carotene and lycopene concentration values
were estimated. Then these values were statistically compared with
the experimental �-carotene and lycopene concentrations (output
variables of verification samples). The statistical comparison was carried
out by the mean prediction error (MPE; eq 9), correlation coefficient
(R2), and p value (PV) between the estimated and experimental values.
PV was a result of the statistical analyses. If PV > 0.05, the estimated
and experimental databases can be assumed statistically equal (null
hypotheses), and the higher the PV value, the more evidence that exists
of null hypotheses. In eq 9, N, yk, and rk are the number of observations,
NN model estimation, and real value, respectively.

MPE) 1
N∑

k

|rk - yk| (9)

Optimization Process of the Neural Network Model. Given that the
designed NN was used to estimate the �-carotene and lycopene
concentration values with the best statistical parameters (MPE, R2,
and PV) as possible, the NN used must be optimized. The
optimization process consists of two stages: first, the main parameters
of the NN were optimized, and second, the optimized NN was tested
using the verification sample.

Table 1. Calibration Parameters and Sensibility of the UV/Vis Spectrophotometric Method Applied to Lycopene and �-Carotenea

equation interval (µg · mL-1) R2 σ intercept σ slope LODb (µg) LOQc (µg)

lycopene Abs502 ) 0.200[C (µg · mL-1)] - 0.001 0.4-3.2 >0.999 0.002 0.001 0.04 0.11
�-carotene Abs446 ) 0.252[C (µg · mL-1)] - 0.001 0.4-3.2 >0.999 0.003 0.002 0.04 0.13

a σ ) standard deviation, LOD ) limit of detection, and LOQ ) limit of quantification. b Equation 10. c Equation 11.

Figure 2. Mixing standard sample absorbance values at 502 and 446 nm for �-carotene (a) and lycopene (b), respectively.

Figure 3. Analysis of the influence of factors (Lc, Lcd, Lci, NHN) on the
responses in the experimental design.

Table 2. Parameters and Characteristics of the Optimized NN Model

NN Model Characteristics

transfer function sigmoid function
training function TrainBR

Optimized Parameters of the NN Model

input neuron number 2
hidden neuron number 5
output neuron number 2
learning coefficient 0.32
learning coefficient decrease 0.67
learning coefficient increase 57

Table 3. Main Statistical Results of the Linear and NN Models
Corresponding to the Verification Samples

�-carotene lycopene

linear NN linear NN

mean PV 0.09 0.817 0.15 0.843
MPE (µg · mL-1) 1.86 0.02 1.10 0.04
R2 0.596 0.991 0.970 0.999
standard deviation (µg · mL-1) 0.54 0.03 0.46 0.04
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(a) Optimization of the NN Parameters. Given that TrainBR was
used as a training function, the main parameters to optimize were the
number of hidden neurons (NHN), Lc, Lcd, and Lci. The optimization
process was carried out by a central composite design 24 + star
experimental design, where the variables analyzed were the parameters
to optimize. Its responses were MPE, R2, and PV values. These were
calculated using experimental and estimated concentration values.

The hidden neurons were tested between 1 and 10 neurons. As
described below, NNs with a hidden neuron were not able to reproduce
the process to be modeled. On the other hand, taking the number of
training samples into account, 10 hidden neurons were estimated in
the literature (26). Lci ranged between 2 and 100 and Lc and Lcd
between 0.001 and 1 as was tested by Torrecilla et al. (21). The
experimental design was analyzed taking into account that the NN
should predict the �-carotene and lycopene concentrations with the
lowest MPE, R2, and PV values to be as close as possible to unity, in
the lowest iteration number.

(b) Testing the Optimized NN. Finally, the verification sample was
input into the optimized NN model, and its estimations were also
statistically checked by calculating MPE, PV, and R2 of the estimated
versus experimental concentration values.

RESULTS AND DISCUSSION

Three types of model groups have been tested: two linear
models (for �-carotene and lycopene compounds) and a model
based on a neural network.

Linear Model. Using individual standard concentrations of
�-carotene and lycopene (from 0.4 to 3.2 µg ·mL-1) and their

respective absorbance values at 502 and 446 nm, two calibration
equations were obtained, Table 1. The calibration parameters
and sensibility of the spectrophotometric methods applied to
�-carotene and lycopene are also shown in Table 1. The
detection (LOD) and quantification (LOQ) limits for this
analytical method have been estimated following ICH Guideline
Q2B (27), eqs 10 and 11, where S and m are, respectively, the
intercept and slope of the fit equations.

LOD) 3S
m

(10)

LOQ) 10S
m

(11)

The �-carotene and lycopene concentrations from each of the
25 standard mixtures were quantified by the equations shown
in Table 1. Interferences on the determination of the concentra-
tion of one compound by the presence of the other were found,
Figure 2. The degree of uncertainty of the concentration of one
compound was dependent on the concentration of the other.
Given the interference between both compounds, the linear
calibration models were not adequate to quantify them. To
overcome this UV interference, a nonlinear model based on an
NN was tested.

Neural Network Model Optimization. NHN, Lc, Lcd, and
Lci were optimized following the process described in the
“Learning and Verification Samples and Processes” section.

Figure 4. Estimation of the �-carotene (a) and lycopene (b) concentrations from linear (9) and nonlinear (2) models versus their experimental concentration
values and their best fit lines (dashed and solid, respectively).

Table 4. Validation of the Neural Network Using Real Samplesa

�-carotene concn (µg · mL-1) lycopene concn (µg · mL-1)

sample experimental (LM) estimated (NN) experimental (LM) estimated (NN)

tomato concentrate 1.004 1.032 1.955 1.969
1.536 1.643 2.798 2.741

tomato sauce 0.881 0.941 1.711 1.639
0.909 0.889 1.591 1.637

ketchup 0.964 0.970 1.706 1.769
0.778 0.731 1.461 1.512

tomato juice 0.699 0.679 1.401 1.457
0.675 0.700 1.192 1.142

tomato puree 0.663 0.665 1.272 1.312
1.536 1.594 2.818 2.867

Statistical Results
MPEb(µg · mL-1) 0.04 0.05
R2 0.992 0.991

a Experimental values calculated by the linear method (LM) and estimated values obtained by the NN application. b Equation 9.
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MPE and R2 (real versus estimated values) versus Lc, Lcd, and
Lci are plotted in Figure 3. The most significant parameter on
the NN model performance was NHN. To reach the highest
values of R2 and minimize the MPE value, the Lc, Lcd, and
Lci values were found to be about in the middle of the respective
tested ranges. The optimized parameter values of the NN model
are shown in Table 2.

To explore the NN model performance, using the verification
samples, the model was used to predict the �-carotene and
lycopene concentrations. The values of MPE, R2, and σ and
the mean PV of the estimated versus experimental values were
calculated, Table 3.

PV was calculated with different parametric and nonpara-
metric testsbasedonmeasuresofcentral tendency (Kolmogorow-
Smirnovtest,Mann-Whitney-Wilcoxontest,andKruscal-Wallis
test) and on the dispersion (Kruscal-Wallis test, Cochran C
test, Barllet’s test, and Levene test) and inferential parametric
tests for significance (F test and t test) (24). Although the mean
PV value calculated comparing the estimated and experimental
values of the lycopene concentration was the closest to 1,
keeping both mean PV values (>0.8) in mind, the NN model
estimations and experimental databases can be assumed as
statistically equal.

Comparing the estimated �-carotene and lycopene concentra-
tion values, using linear models and the optimized NN model,
R2 increases from 0.596 and 0.970 (for �-carotene and lycopene)
to 0.991 and 0.999, respectively. In addition, MPE decreases
from 1.86 to 0.02 µg ·mL-1 for �-carotene and from 1.10 to
0.04 µg ·mL-1 for lycopene. σ and the mean PV by the NN
model were better than those obtained with the linear model,
Table 3 and Figure 4.

Application of the Neural Network to Real Cases. Finally,
to validate the prediction capability of the optimized NN, a new
validation sample based on real samples (tomato concentrate,
tomato sauce, ketchup, tomato puree, and tomato juice) was
performed after carotenoid extraction on hexane (9). Tomato
products were chosen due to their high lycopene content together
with the presence of �-carotene. The mathematical procedure
followed was similar to the verification process described above.
In Table 4 are included the results for tomato product analyses
as well as �-carotene and lycopene statictical results, R2 > 0.99
and MPE < 0.05. The optimized NN was able to estimate the
�-carotene and lycopene concentrations with an adequate
accuracy, when the NN was used within the range studied in
comparison with the calibration curve analytical result method.
Therefore, for the concentration range studied (0.4-1.6
µg ·mL-1), the interference problems between �-carotene and
lycopene can be adequately solved by the neural network.

Concluding Remarks. In this work, the measurement of
the �-carotene and lycopene concentrations with different
�-carotene and lycopene standard mixtures has been carried
out using the spectrophotometric absorbance values at 446
and 502 nm, combined with an optimized neural network.
To optimize the NN model, spectral information was used
as an input vector and the analyte concentration was used as
an output vector.

The neural network was capable of estimating the �-car-
otene and lycopene concentrations with a mean prediction
error lower than 0.02 and 0.04 µg ·mL-1, respectively. Using
an NN model, the MPE value decreased 93 and 28 times
with respect to the estimations of the �-carotene and lycopene
concentrations calculated by linear models; therefore, the UV
interference of �-carotene and lycopene can be solved using
this NN model.

To conclude, we consider that the NN model applied was an
adequate tool to determine accurately the �-carotene and
lycopene concentrations in complex mixtures using a common
analytical and simple technique such as UV/vis spectroscopy,
avoiding the interferences and overestimation of traditional
calibration methods. Once the carotenoids are extracted (sample
preparation), the time required for their spectroscopy determi-
nation is considerably smaller (less than 15 min including the
equipment calibration time) than that of HPLC analysis. With
this method, extracted carotenoids have to be evaporated and
redissolved in the appropriate mixture depending on the mobile
phase composition and then injected into the HPLC system.
After the neural network has been optimized, the analysis of
the absorbance values would be on the order of seconds. This
improvement in the result interpretations will be very valuable
for its application to a fast and reliable �-carotene and lycopene
evaluation in food samples.

LITERATURE CITED

(1) Goodwin, T. W. Metabolism, Nutrition, and Function of Caro-
tenoids. Annu. ReV. Nutr. 1986, 6, 273–297.

(2) Cantuti-Castelvetri, I.; Shukitt-Hale, B.; Joseph, J. A. Neurobe-
havioral aspects of antioxidants in aging. Int. J. DeV. Neurosci.
2000, 18, 367–381.

(3) Ferguson, L. R. Micronutrients, dietary questionnaires and cancer.
Biomed. Pharmacother. 1997, 51, 337–344.

(4) Yamaguchi, M.; Uchiyama, S. Effect of carotenoid on calcium
content and alkaline phosphatase activity in rat femoral tissues
in vitro: the unique anabolic effect of beta-cryptoxanthin. Biol.
Pharm. Bull. 2003, 26, 1188–1191.

(5) Schoefs, B. Chlorophyll and carotenoid analysis in food products.
Properties of the pigments and methods of analysis. Trends Food
Sci. Technol. 2002, 13, 361–371.

(6) Bicanic, D.; Anese, M.; Luterotti, S.; Dadarlat, D.; Gibkes, J.;
Lubbers, M. Rapid, accurate and direct determination of total
lycopene content in tomato paste. ReV. Sci. Instrum., Part 2 2003,
74 (1), 687–689.

(7) Sander, L. C.; Sharpless, K. E.; Pursch, M. C30 stationary phases
for the analysis of food by liquid chromatography. J. Chromatogr.
2000, 880 (1-2), 189–202.
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